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Multireference Adaptive Noise Canceling
Applied to the EEG

Christopher J. James, Martin T. Hagan, Richard D. Jones,
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Abstract—The technique of multireference adaptive noise canceling
(MRANC) is applied to enhance transient nonstationarities in the elec-
troencephalogram (EEG), with the adaptation implemented by means of
a multilayer-perceptron artificial neural network (ANN). The method was
applied to recorded EEG segments and the performance on documented
nonstationarities recorded. The results show that the neural network
(nonlinear) gives an improvement in performance (i.e., signal-to-noise
ratio (SNR) of the nonstationarities) compared to a linear implementation
of MRANC. In both cases an improvement in the SNR was obtained.
The advantage of the spatial filtering aspect of MRANC is highlighted
when the performance of MRANC is compared to that of the inverse
auto-regressive filtering of the EEG, a purely temporal filter.

Index Terms—Adaptive filters, electroencephalography, neural network
applications, nonlinear filters.

I. INTRODUCTION

The electroencephalogram (EEG) can be considered to consist of
an underlying background process (assumed stationary and ergodic),
with superimposed transient nonstationarities (TNS’s) such as spike
and sharp-waves (SSW’s), electrode “pop,” eye-blinks, and mus-
cle artifacts. The detection of SSW’s in the EEG is of particular
importance in the diagnosis of epilepsy.

Methods for detecting SSW’s have included mimetic methods
[1], [2] and the use of template matching [3]. The lack of any
definition of a SSW other than “transients clearly distinguished from
background activity with pointed peaks at conventional paper speeds”
[4] means that what constitutes the “ideal” SSW can vary amongst
researchers. Instead of matching a single template, several authors
have employed an artificial neural network (ANN) by training the
ANN on a large number of known SSW’s [5], [6]. Lopes da Silva
et al. [7] used the method of modeling the (stationary) background
EEG with an autoregressive (AR) prediction filter and detecting
TNS’s by examining the prediction error; the AR filter was calculated
from a segment of the background EEG which is assumed to be
stationary. The major drawback is that the stationarity assumption
may not always hold true, leading to a large number of false
detections.

The method described here comprises the first stage of a ANN-
based system designed to detect SSW’s in the interictal EEG.
The system makes use ofmultireference adaptive noise canceling
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Fig. 1. Multireference adaptive noise canceller.

(MRANC), as described by Widrowet al. [8]. The background EEG
on other channels in the multichannel EEG recording is used to
adaptively cancel the background EEG on the channel under inves-
tigation. The use of a multilayer ANN to implement the MRANC
filter provides the opportunity to model the EEG spatial distribution
as nonlinear and leads to improved performance over the linear
case.

II. M ULTIREFERENCE ADAPTIVE NOISE CANCELING

Multireference adaptive noise canceling [8] is illustrated in Fig. 1.
The EEG signal is assumed to consist of a signals0 (here, mod-
eling the TNS) contaminated by noisen0 (here, modeling the
background EEG) which is assumed to be uncorrelated with the
signal. Each reference inputEre�(k) contains a noise signalni

which is uncorrelated withs0, but correlated withn0. The adaptive
filter adapts its parameters so as to produce an output signala

which is as close as possible ton0. This output is then sub-
tracted from the primary input, canceling the noise contentn0 but
leaving signals0 intact. The adaptive filter continuously adjusts
to minimize the outputz. Any suitable adaptive algorithm which
minimizes the output can be used; in particular, the least mean
square (LMS) adaptive algorithm [8] can be used if the system
is assumed to be linear. The LMS algorithm is employed in the
work reported here to compare with the nonlinear ANN described
below.

The reference inputs to the adaptive noise canceller may contain
some signal components which are correlated to the signal at the
primary input (Fig. 1). As the level of crosstalk increases, the
performance of the noise canceller begins to deteriorate and the noise
canceller not only cancels the noise at the primary input but begins
to distort the signal component as well. It can be shown that as
the number of reference channels is increased, the performance is
improved, even in the presence of a limited amount of crosstalk on
some of the channels [9].

Adaptation to temporal variation, as distinct from spatial variation,
is incorporated by introducing a finite numberp of delays at each
reference input in the form of a tapped delay line. Thus for each
reference channelEre�, samplesEre�(k); Ere�(k�1); � � � ; Ere�(k�
p) are input to the adaptive filter.

The adaptive filter is here implemented by means of a three-
layer feedforward ANN, as an alternative to the LMS adaptive linear
combiner. The ANN hasN(p + 1) inputs (whereN is the number
of reference channels), an arbitrary numberH of neurons in the
hidden layer and a single neuron in the output layer. Each neuron
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TABLE I
CHARACTERISTICS OFEEG SEGMENTS (SSW’S ARE CLASSIFIED AS DEFINITE, PROBABLE, OR POSSIBLE BY EEGER)

in the hidden layer has a log-sigmoidal nonlinear activation function
while the single output neuron has a linear activation function. It
can be shown [10], [11] that through the use of the backpropagation
training algorithm the weights and biases of the three-layer ANN
may be adjusted so as to minimizez2(k). To further optimize the
performance of the ANN, the learning rate adaption procedure known
as the “delta-bar-delta” learning rule is used [10].

III. M ETHODS

A. Data Collection

The EEG was recorded by scalp electrodes placed according
to the International 10–20 system. Sixteen channels of EEG were
recorded simultaneously both for referential and bipolar montages.
The amplified EEG was sampled at 200 Hz, digitized to 12 bits and
stored for later off-line processing.

B. Performance Index

As a means of measuring the performance of the system, the signal-
to-noise ratio (SNR) is defined as the ratio of the peak-to-peak value
of the SSW to the root mean square (rms) value of the background
EEG for a number of samples on either side of the SSW, excluding
the SSW itself. As the duration of SSW’s is 70–200 ms [4], we have
assumed a typical duration of 135 ms, corresponding to 27 samples
at 200 samples/s. The peak-to-peak valueSpp is calculated from
samples within the range�14 samples from the maximum negative
peak. Finally, 30 samples (150 ms) on either side of the 27-sample-
wide SSW are chosen to describe the immediate background EEG and
to calculate the background rms valueBrms. The SNR is calculated
by SNR= Spp=Brms. The primary performance index used is the
percentage increase in SNR defined as

�SNR=
SNRnew � SNRold

SNRold
� 100% (1)

where subscripts “old” and “new” refer to before and after filtering,
respectively.

C. MRANC and ANN Parameters

Experiments were performed to determine the number of reference
channelsN , the number of delays to be considered for each reference
channel p, and the number of neuronsH in the single hidden
layer of the ANN. To remove crosstalk it is preferable to choose
reference channels as far as possible from the primary input channel.
Conversely, the more distant a reference channel lies from the

primary input channel, the less correlated the background EEG
becomes with the primary channel and hence the more MRANC
performance deteriorates. To determine the optimal combination of
reference channels, the reference channels were put into three groups,
N was varied for each group, and a number of tests carried out
for each case. The channel containing the highest amplitude SSW’s
was made the primary channel. The reference channels were then
grouped as follows: group A comprised the three channels closest
to the primary channel, group B the four channels furthest from the
primary channel, and group C all channels other than the primary
channel.

A number of tests were carried out withH set at 2, 5, 10, and 20.
Preliminary testing indicated that system performance was optimal
for p = 2 and, hence, this was used for all subsequent tests.

D. Subjects

The system was tested on the epileptiform EEG’s of six patients.
Single segments of bipolar EEG, each containing ten SSW’s (classi-
fied by an electroencephalographer as definite, probable or possible),
were chosen from each patient (see Table I). The SNR of each SSW
was calculated in the original recording. So as to test the system on
a range of different SSW’s, the EEG’s chosen included both focal
SSW’s and generalized SSW’s.

E. Autoregressive Prediction

For comparison with MRANC, the technique of autoregressive
(AR) prediction as described by Lopes da Silvaet al. [7] was applied
to the primary channel EEG of each patient. In this method the EEG
is considered as being the output of an AR filter having an input
of white noise (normally distributed). Passing the EEG through the
inverse of the estimated AR-filter should therefore result in normally
distributed (white) noise, the prediction error. At any point at which
the prediction error deviates from a normal distribution (at a certain
probability level) a TNS is assumed to be present at the input.

The coefficients of the AR model were estimated by Durbin’s
algorithm (see Makhoul [12]) on the first 800 samples (4 s). The
order of the estimated AR filter was set atp = 15, corresponding to
that used by Lopes da Silvaet al. [7]. The SNR of the known TNS’s
was measured (as in Section III-B) at the output of the inverse AR-
filter and the percentage increase in performance calculated. Also
calculated was a detection function [7]d(k) =

k+2

m=k�2
[
ê(m)

�̂
]2,

whereê(k) is the prediction error of the inverse AR filter and�̂2 is
the variance of the prediction error. For a normally distributedê(k),
d(k) would have a�2 distribution with five degrees of freedom (d.f.)
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(a)

(b)

(c)

Fig. 2. Results of processing an 800 sample (4 s) epoch of signal for Patient #1 containing three SSW’s. The primary signal was recorded att5–o1 and
references atc3–p3; p3–o1 andt3–t5. (a) The original signal and primary input to the MRANC filter—the SNR’s of SSW’s are indicated. (b) The output of
the linear MRANC filter and (c) the nonlinear MRANC filter(p = 2;H = 2). The percentage increase in SNR is indicated by the values in brackets.

[7]. A thresholdD was set ford(k) on the basis thatP (d(k) >
D) < 0:001; from tabulated values,D = 20:5.

IV. RESULTS

On calculating the average performance of the MRANC over all
six patients with each group of reference channels, with the number of
neurons in the hidden layer varying from 2 to 20, for both linear and
nonlinear implementation of MRANC, the following was observed:
MRANC achieved an increase in the average SNR of SSW’s in
all patients for both linear and nonlinear configurations. However,
in virtually every SSW tested over the six patients, the nonlinear
MRANC configuration resulted in a significant improvement in
performance over the linear configuration. Overall, increasing the
number of neurons in the hidden layer above ten resulted in no
significant improvement in performance. These results also show that
performance increased slightly as more channels were included in the
reference groups. Fig. 2 depicts a particular example of three SSW’s
in the EEG segment of patient #1.

Overall, linear MRANC resulted in an average performance of 76%
(p = 2, Group C) and nonlinear MRANC 121% (p = 2; H = 10,
Group C).

The performance of MRANC was superior to the inverse AR-filter
output in terms of enhancement of SSW’s by an average 18%. Fig. 3
illustrates inverse AR-filtering (withp = 15) applied to a single 3-s
segment. The same segment was MRANC filtered (using reference
group C,H = 10; p = 2) and subsequently inverse AR filtered,
producing its corresponding prediction error and detection function.
A threshold was set for the detection function of each case, Fig. 3(c)
and (f), corresponding to a probability level of 0.001 for detecting
the presence of TNS’s. While the known TNS was detected in both
cases, numerous false detections occurred for the “raw” EEG case.
The SNR of the known TNS (SSW in this case) is shown in Fig. 3
both for the inverse AR-filtered EEG and the MRANC filtered EEG,
along with�SNR in each case.

The MRANC filter can be considered to converge to a highpass
filter (HPF) the characteristics of which varies with time and between
EEG’s of different patients. Fig. 4 shows the frequency response of
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(a) (d)

(b) (e)

(c) (f)

Fig. 3. Nonlinear MRANC and inverse AR filtering applied to a 3-s EEG segment. (a) The original EEG segment. (b) The prediction error from inverse
AR filtering the “raw” EEG (p = 15), and (c) the detection function calculated from (b) with 5 d.f. (d) The MRANC filtered version (nonlinear) of
the EEG (ref. group C,H = 10; p = 2). (e) The corresponding prediction error due to inverse AR filtering the MRANC filtered EEG(p = 15)
and (f) the detection function from (e) with 5 d.f.

Fig. 4. Amplitude response of nonlinear MRANC filter (reference group C,
H = 10; p = 2) at timest1 = 500 ms after SSW #1,t2 = 900 ms after
SSW #2 andt3 = 200 ms after SSW #3 (see, Fig. 2).

the MRANC filter (withH = 10 and utilizing reference group C) at
different instances in time through the EEG segment of Fig. 2. The
figure highlights the variability with time of the filter characteristics.

V. DISCUSSION

Implementing MRANC by means of an ANN allows the process to
be modeled as nonlinear which has been shown to yield considerably
better results than its linear counterpart (LMS). The adaptive nature
of the MRANC filter also allows for variations in the background

EEG’s of different patients to be accommodated. Classification of
the enhanced TNS’s into epileptiform and nonepileptiform events is
to be performed by a following stage. Our contention is that the
classification process will be rendered considerably more accurate in
terms of both sensitivity and selectivity by the prior attenuation of
the background EEG.

The presence of signal crosstalk between the primary and reference
channels is a significant factor affecting the performance of MRANC.
In the case of EEG, maximum crosstalk is seen with generalized
epileptiform activity such as, for example, in patient #6. Nevertheless,
although MRANC did not perform as well for patient #6 as for
the other patients, a substantial improvement in SNR was still
achieved.

Another factor affecting MRANC performance is the correlation
of the noise source between the input channels. Designating all
channels other than the primary channel as reference channels (i.e.,
reference group C), confers a practical advantage in that it eliminates
the need for arbitrary selection of reference groups dependent on a
primary channel and montage for a particular EEG segment. Initially,
it was thought that the choice of reference channels would prove
the most important factor in the application of MRANC to the
EEG, but this turned out not to be the case. Although increases
in performance were seen as more reference channels were added,
these were slight.

MRANC (withH = 10 and utilizing reference group C) performed
better than the inverse AR-filtering method. The fundamental differ-
ence between the two approaches is that the AR-filtering method
utilizes purely temporal information and relies on the nonstationary
properties of TNS’s to enhance their presence in the otherwise
stationary background EEG, whereas MRANC utilizes spatial as well
as temporal information (but, particularly the former) to enhance
TNS’s in the primary channel, with no prior knowledge of “signal”
or “noise” characteristics required.
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In conclusion, it is clear that MRANC can considerably enhance the
presence of focal activity in the EEG and that the use of a nonlinear
ANN in the application of MRANC improves the effectiveness of the
process. By enhancement of transient nonstationarities, in particular
spikes and sharp-waves, MRANC should provide an important first
stage in the detection of epileptiform activity in the interictal EEG.
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