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INTRODUCTION 
Both rule-based and artificial-neural-network approach- 

es have been applied to the task of automating the detec- 
tion of epileptiform activity (EA) in the EEG.' To date, how- 
ever, few have been introduced into routine clinical use 
and, even then, only with limited success.* The central 
problem is false detections arising from various sources 
(muscle, ECG, electrode, movement, and eye blink arti- 
facts, and sharp background activity), which have proven 
almost impossible to eliminate automatically. This not only 
reflects the difficulty in distinguishing spikes from back- 
ground activities and artifacts but is also due to a lack of 
attention to spatial and temporal contextual cues present in 
the EEG.3-7 In contrast to the electroencephalographer 
(EEGer) -who utilizes amplitude, sharpness, and polarity 
of spikes on adjacent channels, as well as the presence 
and localization of EA elsewhere in the EEG -automated 
systems have tended to consider waves individually or in a 
very limited context. Consequently, high false detection 
rates have largely restricted clinical application of spike 
detectors to long-term EEG monitoring, where they act as 
data reduction systems with all detections needing review 
by an EEGer.2.* In addition, these systems are not accurate 
enough to be of real benefit in standard EEG recording. 

We have developed a system for automated detection 
and topographical mapping of EA in scalp EEG recordings. 
The primary goal of this system is to assist the EEGer in 
the reporting of routine EEGs by decreasing time spent on 
and increasing uniformity of interpretation. A central com- 
ponent of this system is a multi-stage rule-based system 
incorporating mimetic and expert system approaches. In 
contrast to most other systems, it relies heavily on both 
spatial and temporal EEG contextual information and is 
particularly successful at rejecting nonepileptiforn activi- 
ty.3,6,g-'' This paper presents the results of a clinical trial 

comparing accuracy and utility of the system to conven- 
tional visual EEG reading. 
METHODS 
1. EEG data 

The data comprised EEGs from 521 consecutive 
patients referred to the Neurology Department at 
Christchurch Hospital for routine EEG recordings. The 
patients were aged from 2 weeks to 86 years. Each EEG 
was of approximately 20-minutes duration (making a total 
of 173 hours of 16-channel EEG data) from seven bipolar 
and referential montages. Recordings were usually made 
while the patient was awake but resting and included peri- 
ods of eyes open, eyes closed, hyperventilation, and phot- 
ic stimulation. Amplification was provided by a Siemens 
Minograph Universal EEG machine. Many EEGs contained 
substantial artifact, particularly EMG, electrode, move- 
ment, and eye movement. The EEGs were bandpass-fil- 
tered between 0.5 and 70 Hz (5-pole Butterworth filter) and 
sampled at 200 Hz. The criterion for stopping the data col- 
lection was the recording of 50 EEGs judged by one EEGer 
(GC) to contain definite EA. 
II. System description 

The spike detector runs in real-time on a 486/586 PC 
and comprises six stages (Figure 1): (1) Data acquisition: 
Low-pass filtering (70 Hz, 5 pole), sampling at 200 Hz and 
digitization of 16 channels of bipolar or referential EEG. (2) 
Global amplitude: Calculation of average amplitude over all 
channels during the first 60 sec of EEG. This eliminates the 
need to know absolute amplitudes in the detection 
process. (3) Mimetic (feature extraction): Data reduction, 
via a single channel process, by calculating parameters of 
individual waves (e.g., duration, amplitude and peak sharp- 
ness) and comparing these with measures of background 
activity. Waves whose parameters exceed a set of thresh- 
olds are put forward as candidate epileptiform transients 
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Figun 1. 
Schematic d real-time sp*e detector. 

(CETs) at singlechannel level. (4) Spatial context (expert 
system): Use of multichannel spatial cues (e.g., presence 
of synchronous waves of sufficient ampliude, sharpness 
and polarity on adjacent channels) to determine whether 
CETs are part of definite or possible epileptiform events - 
i.e., spikes or shapwaves. (5) Temporal context (expert 
system): Using the presence of definite or possible spikes 
with a similar distribution elsewhere in the EEG to upgrade 
possible spikes to definite spikes. (6) Printout - Definite 
events are reported as numbers of major events (consid- 
ered definite on spatial grounds alone) and minor events 
(probaMe events upgraded to definite due to temporal con- 
text). If no definite spikes are detected, 6.0 sec segments 
of the raw EEG centered around any remaining possible 
events (usually 1 or 2 at most) can be printed out for review 
by an EEGer (Figure 2). In addition, il one or more definite 
spkes are detected a topographic map is produced with 
d i  inditing the electrodes(s) at whi i  the spikes were 
detected (Figure 3). The sue of the disc at the electrode at 
w h i i  most spikes were detected is set to the maximum 
size. The area of the discs at other electrodes indicates the 
pqw?ion of spikes detected at these electrodes. The final 
output is classification of the EA as one of definite, ques- 
tionable or none. For a fuller description of the detection 
system see Dingle el al.' 

The first five of the above stages have been integrated 
to atlab splke detection in real-time! This was achieved by 
pswdo-rnultitasking these stages via a reel-time exew- 
live. Once the gkkd amplitude has been calculated, and 
while continuing to sample and store the incoming data, 

the program goes back to the start of the data and com- 
mences the spike detection process. Initially the raw EEG 
for this must come from disc but, after a minute or so, the 
system has caught up and is able to process incoming data 
directty. During spike detection, control alternates between 
the mimetic and spatial stages to detect spikes on spatial 
grounds alone. Full temporal processing takes only a few 
seconds and, hence, can be camed out frequently. In a 
standard EEG this need only be done at the end of the 
recording. Conversely, for long-term monitoring temporal 
updates about every 5 minutes or so are adequate. 
111. Review of raw EEG data 

The conventional EEG chart recordings were read by 
three experienced EEGers (EEGers-I): GC, EW, and SD. 
GC read all 521 EEGs, whereas EW and SD read 312 
EEGs and 315 EEGs, respectively. All three EEGers read 
106 EEGs. 

The EEGers reported on two levels about EA. Firstly, 
the presence of EA, with options being none, questionable 
OT definite. Secondly, if EA was present (definite or ques- 
tionable) the distribulion of activity was listed as general- 
ized, lateralized, focal or multifocal. 
IV. Re* of fbtecth system output 

Two further experienced EEGers (EEGers-ll), ID and 
PP, each reported the detection system's output for all 521 
EEGs. The system's assessment of the presence of EA 
was used directly by these EEGers unless it detected only 
questionable spikes, in whi i  case 6.0 sec segments of 
raw EEG centered around each questionable event were 
examined and the presence of €4 was determined directly 
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Figure 2. 
A 6.0 sec segment of EEG centered on a questionable epileptiform event reported by the detection system. The event was reported as 
definitely epileptiform by the 2 EEGers in EEGers-l who read this EEG and had the benefit of temporal context of the entire 20 minute 
EEG. In contrast, on being able to view only the EEG segment, both EEGers in EEGers-ll were only able to report the event as ques- 
tionable. Although reasonably high amplitude, the epileptiform event has been confounded by the surrounding background showing gen- 
eralized slowing, due to the patient being asleep. 
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Figure 3. 
System output for an EEG in which definite EA was detected by 
the PC. The definite events are subdivided into major and minor 
according to whether they were considered definite on spatial 
grounds alone or whether both spatial and temporal context was 
needed. A topographic map displays the distribution of spikes 
over the head. The area of a particular disc indicates the propor- 
tion of spikes arising at that electrode. In this case, the discs indi- 
cate a spike focus under or close to the left occipital electrode. 

from these. The topographic map of spikes was used to 
determine the distribution of the EA. 
V. Data organization 

To create a gold standard against which performance of 
the detection system could be assessed, the data from 
EEGers-l was combined for each patient. This involved the 
use of a subjective scheme that was felt to best represent 
the certainty of there being EA in each patient's EEG based 
on how each EEGer had rated it. There were 16 possible 
combinations of rating by EEGers, assuming that ratings 
could be regarded exchangeably. Each combination of rat- 
ings was then placed in one of three combined categories - 
none, questionable, or definite -that was felt to best repre 
sent the combined EEGers assessment of the presence of 
EA in the EEG. Table 1 shows the combining scheme used 
for EEGers-I. In essence, the combining scheme was 
designed to place the EEGs in the questionable category 
unless there was good agreement for or against the pres- 
ence of EA. A similar scheme was used to combine the 
reports from EEGers-11, with EEGs placed in the question- 
able category unless there was exact agreement. 

Table 1 
Combining scheme for detection of epileptiform activity 
by EEGers-l and number of each combination observed 

EEGers' Combined 
classifications classification Number 

N, N, N N 80 
N, N, - N 348 
a, N, N N 9 
D, N, N Q 1 
Q, N, - Q 21 
D, N, - a 7 
Q, Q, N Q 1 
a, Q, - Q 3 
Q, Q, Q Q 1 
D, Q, - a 10 
D, Q, N Q 2 
D, Q, Q a 0 
D, D, N D 3 
D, D, - D 26 
D, D, Q D 0 
0, D, D D. 9 

Total 521 
D = Definite; Q = Questionable; N = None; - = Not read 

VI. Data analysis 
The performance of the system was measured in terms 

of sensitivity and selectivity in a similar manner to that 
described by Webber et all but at a global rather than indi- 
vidual event level. Thus the results reported parallel more 
closely the global approach taken by the EEGer when 
reading EEGs in clinical practice. The quantities used to 
calculate percentage sensitivity and selectivity were €A 
count (number of EEGs in which EEGers-l reported 
EA),detector count (number of EEGs in which the PC 
reported EA), and match count (number of EEGs for which 
both EEGers-l and the system reported the presence of 
EA). Using these quantities the percentage sensitivity and 
selectivity were defined as: 

100 x match count Sensitivity = EA count 

100 x match count 
etector count Selectivity = 

The sensitivity and selectivity of the system relative to 
EEGers-l were calculated for EEGs containing definite EA 
as well as for EEGs containing either definite or question- 
able EA. The rate of false detections at the individual spike 
level was also calculated to facilitate comparison of perfor- 
mance with other spike detection systems. 
RESULTS 
1. Detection of epileptiform activity 

Of the 521 EEGs, GC reported 70 (13.4%) as contain- 
ing definite or questionable EA, with 50 (9.6%) considered 
definite. EW read 312 EEGs and reported the presence of 
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Table 2 
Detection of epileptiform 

activity - EEGers-l versus detection system 
EEGers-l System 

None Questionable Definite Total 
None 303 105 29 437 
Questionable 20 13 13 46 
Definite 2 7 29 38 
Total 325 125 71 52 1 

Table 3 
Detection of epileptiform 

activity - EEGers-l versus EEGers-ll 
EEGers-l EEGers-ll (including system) 

None Questionable Definite Total 
None 388 20 29 437 
Questionable 29 4 13 46 
Definite 2 7 29 38 
Total 41 9 31 71 52 1 

EA in 50 (l6%), with 26 (8.3%) EEGs considered definite. 
SD read 315 EEGs and reported EA in 36 (11.4%), with 29 
(9.2%) considered definite. 

For the 106 EEGs read by all three of EEGers-I there 
was agreement in 85% of cases, while for the 415 EEGs 
read by only two of EEGers-l the mean level of agreement 
on the classification of EA was 89%. A substantial propor- 
tion of this inter-EEGer agreement was due to the large 
number of EEGs (428 or 82%) in which no EEGer report- 
ed the presence of EA. If these cases are disregarded, the 
ievei of agreement drops markedly. For cases in which two 
EEGers read the EEG, their average agreement on the 
presence of definite or questionable EA was only 55% for 
EEGs in which at least one EEGer reported EA. For the 
cases where three EEGers read the EEG their agreement 
on the presence of EA was only 39% for EEGs in which at 
least one EEGer reported EA. Table 1 contains the fre- 
quency data for each combination of EEGer interpretations 
observed in this study. 

The average percentages of missed and false definite 
epileptiform EEGs for EEGers-l were calculated on a pair- 
wise basis and were both found to be 12%. The reports of 
the three EEGers were combined to obtain a gold standard 
for the 521 EEGs - 437 (83.9%) EEGs containing no EA, 
46 (8.8%) EEGs containing questionable EA and 38 (7.3%) 
EEGs containing definite EA. 

The detection system detected the presence of EA in 
196 (37.6%) of the 521 EEGs, with 71 (13.6%) classified as 
definite. Table 2 shows the contingency table of combined 
EEGers-l versus the detection system. By examining the 
cells on the main diagonal of the Table it can be seen that 
EEGers-l and the system agreed on 345 (66%) cases. 

The system's sensitivity and selectivity were calculated, 
with the combined data from EEGers-l being considered as 
the gold standard. The system had a sensitivity of 76% for 
correctly classifying EEGs reported as containing definite EA 
by the EEGers. The system's selectivity for EEGs containing 
definite EA was 41%. The low selectivity of the system 
reflects the relatively large number of false detections. 

Complete disagreement between the system and 
EEGers-l occurred in 31 (6.0%) cases. Of these, 2 were 
missed definite detections by the system and 29 were false 
definite detections. The 2 missed definite detections out of 

the 38 definite detections reported by EEGers-l gives a 
missed detection level of 5%, while the 29 false definite 
detections out of the 71 definite detections reported by the 
system gives a false detection level of 41%. 

The system's false detection rate was determined from 
the 59 false definite events reported by the system within 
the 29 false definite EEGs. As there were 437 nonepilepti- 
form EEGs (146 hours) this indicates a false detection rate 
of 0.41 false definite detections per hour. 

EEG segments containing the events in the 125 EEGs 
that the system reported as questionable were reviewed by 
EEGers-ll. One EEGer classified 114 of these as containing 
no EA and 1 1  as containing questionable EA, with none 
considered to contain definite EA. The other EEGer report- 
ed definite EA in 3 EEGs, questionable EA in 22 EEGs and 
absence of EA in 100 EEGs. Combined results for these 
two EEGers gave 94 EEGs that contained no EA and 31 
EEGs that contained questionable EA. Table 3 shows the 
contingency Table for combined EEGers-l versus combined 
EEGers-Il. Of the 125 EEGs reported as containing ques- 
!ionable EA by the system, EEGers-l reported 105 as con- 
taining no EA. After reviewing the printouts of the question- 
able events, EEGers-ll were able to correctly classify 85 of 
these 105 EEGs as nonepileptiform. EEGers-l reported 13 
EEGs as Containing questionable EA, of which, on review- 
ing the printouts, EEGers-ll classified 9 as containing no EA 
and 4 as containing questionable EA. The remaining 7 
EEGs were classified as containing definite EA by EEGers- 
I but classified as questionable by EEGers-ll. 

The number of EEGs on which there was exact agree- 
ment increased to 405 (78%) after the review by EEGers- 
II. Conversely, the cases of complete disagreement were 
not affected by the review of the questionable spikes. The 
sensitivity and selectivity of the combination of the auto- 
mated system and EEGers-ll to definite EEGs were also 
unaltered by the review. The sensitivity for definite and 
questionable epileptiform EEGs decreased to 63% while 
the selectivity rose to 52%. 
II. Distribution of epileptiform activity 

Of the 29 EEGs in which both EEGers-l and the system 
reported the presence of definite EA, EEGers-l agreed on 
17 as being generalized, 4 as focal, 4 as multifocal and dis- 
agreed on the remaining 4 EEGs. The combined EEGers- 
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Table 4 
Categorization of epileptiform 

activity - EEGers-l versus EEGers-ll 
EEGers-I EEGers-ll 

Generalized Focal Multifocal Total 
Generalized 13 2 0 15 
Focal 0 2 0 2 
Multifocal 0 2 0 2 
Total 13 6 0 19 

II reported 15 as generalized, 8 as focal, none as multifo- 
cat and disagreed on 6 EEGs. No lateralized EA was 
reported by either group. 

Table 4 gives the contingency table of combined 
EEGers-I versus combined EEGers-ll for categorization of 
EA with the 10 cases of within-group disagreement 
removed. The two groups agreed on the distribution of the 
EA in 15 (79%) of the 19 EEGs. Two cases of incorrect dis- 
tribution were due to EEGers-ll misinterpreting generalized 
EA on the spike map as being focal and the other 2 were 
due to inability to distinguish multiple foci due to lack of 
temporal separation information on maps. 

DISCUSSION 
1. Conventional Interpretation of EEGs and obtaining 
a gold standard 

EEGers-I had a high level of agreement on the classifi- 
cation of EEGs in the overall data-set, although in part this 
could be attributed to the large number of EEGs containing 
no EA. Conversely, for EEGs in which at least one EEGer 
reported EA there was surprising disagreement. Such dis- 
agreement made it difficult to obtain a gold standard 
against which to judge the system. 

The combination scheme was devised to help over- 
come the difficulties created by this disagreement and was 
our best estimate of whether EA was actually present. It is 
important to note that comparing the automated system 
with this standard is not strictly fair. This is because dis- 
agreement between EEGers-l (which occurred for 11Y0 of 
the EEGs) still led to the EEG being classified as contain- 
ing no, questionable or definite EAwhich was different from 
at least one of the EEGers’ interpretations. With this in 
mind it seems unreasonable to expect the system to agree 
exactly with the combined EEGers when the EEGers them- 
selves do not agree. 

Other studies have used various approaches to try to 
overcome the problem of not having a gold standard for 
automated EEG analysis. Hostetler et al* weighted 
EEGers’ scores for detecting spikes by experience and 
obtained an average for the EEGers. This score was used 
to assess the ability of their detection system to detect 
spikes. Webber et all2 incorporated an experience score 
into their analysis to assess agreement between pairs of 

EEGers detecting spikes. Pietila et all3 allowed their two 
EEGers to re-evaluate differences in their scoring so as to 
create a consensus file for use as a reference in determin- 
ing the performance of two detection systems. Wilson et 
all4 used a probability-based scheme to establish continu- 
ous-valued definitions of sensitivity, selectivity and speci- 
ficity, although the validity of this approach has been ques- 
tioned.l5 A Bayesian approach has been used by Black et 
alls to create a gold standard from which estimates of the 
performance of EEG readers (human or computer-based) 
can be obtained. In all of these studies there was consid- 
erable variation present between the expert EEGers. 
II.  Automated detection 

The system succeeded in detecting (i.e., reporting as 
containing definite or questionable EA) 36 of the 38 EEGs 
containing definite EA, a missed detection level of only 5%, 
indicating that it misses very few EEGs containing definite 
EA. Interestingly, EEGers-l had an average within-group 
missed detection level of 12%. 

The biggest area of disagreement between EEGers-l 
and the system was over the 437 EEGs classified by 
EEGers-l as containing no EA. These EEGs were reported 
by the system as containing definite EA in 29 (6.6Yo) cases 
and questionable EA in 105 (24%) cases. This indicates 
that the system was unable to distinguish between EA and 
artifacts or sharp background activity as accurately as an 
EEGer. This is in marked contrast to preliminary results 
obtained with 148 routine EEGs in which the system was 
found to have a sensitivity and selectivity of 100% at the 
global EEG level,” a reflection of the test data having been 
previously used for fine-tuning the system. The system has 
a false detection rate of only 0.41 per hour. Importantly, this 
was achieved on data containing substantial artifact. 

A major problem when comparing studies in the litera- 
ture is that performance of a detection system is highly 
dependent on the data used. For example, it is possible for 
a system with a high false detection rate to also have a high 
sensitivity and selectivity if the data contains a large amount 
of EA, as the proportion of correct detections can still out- 
number the proportion of false detections. However, as is 
evidenced by this study, the majority of routine clinical 
EEGs are nonepileptiform, so a system with high selectivity 
on data containing a large amount of EA would be expect- 
ed to have a much lower selectivity for routine clinical 
EEGs. Thus, we consider the false detection rate to be the 
most appropriate measure of the selectivity of the system 
for both standard EEG and long-term EEG monitoring. 

So, how does our system compare with others reported 
in the literature with respect to false detection rate? Glover 
et all7 used a rule-based expert system to detect spikes in 
approximately 90 minutes of EEG from three subjects. The 
false detection rate was reported to be 23 per hour for this 
data. Their system has been further improved by the addi- 
tion of new rules and an emphasis on localization of epilep- 
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tic foci as opposed to detection of all epileptiform events.' 
Its performance was evaluated on a total of 6.2 hours of 
EEG from 18 subjects (1 3 with EA and 5 controls) and indi- 
cated an average false detection rate of 17 per hour. 

Hostetler et a$ used the spike detection system devel- 
oped by Gotman and his c011eagues.'~~'~ A total of 1160 
events were reported in 5 EEGs of 20 minutes duration. An 
average of 16% of events reported were false detections, 
giving a false detection rate of 111 per hour. This corre- 
sponds to the highest sensitivity setting for the system, 
which would naturally have the lowest selectivity. Although 
Hostetler et al have not provided sufficient data to calculate 
an exact figure, we estimate that the setting giving the high- 
est selectivity would result in a false detection rate of approx- 
imately 37 per hour. The 111 false detections per hour cor- 
responds to a rate of 117 false detections per hour (based 
on an average of 195 false detections per 100 minute EEG 
from 20 patients) reported in a study by Gotman and Wang.5 
Similarly, Gotman and Wang" assessed an improved ver- 
sion of their mimetic system which made use of wide tem- 
poral context by classifying EEG into one of five states 
(degrees of wakefulness and sleep) and applying state- 
dependent rules to help reject artifacts. This system reduced 
the false detection rate to 47 per hour. 

An artificial neural network (3-layer feed-forward net- 
work trained by back-propagation) was used by Gabor and 
Seya12' to detect spikes in 5 epileptiform EEGs. However, 
as the system had to be trained on predetermined spikes 
for each patient it would seem to have limited clinical utili- 
ty. The system had an average false detection rate of 64 
per hour. 

Webber et all used a similar artificial neural network to 
detect spikes in 10 EEGs of 1.5 to 2.5 minutes duration. At 
the crossover, a sensitivity and selectivity of 73.3% was 
reported and a false detection rate of 592 per hour could 
be deduced. 

Pietila et all3 used adaptive segmentation to perform 
automated EA detection in 12 EEGs from six patients with 
epilepsy. The false detection rate was not reported but the 
system was said to have a lower selectivity (although high- 
er sensitivity) than the Gotman ~ y s t e m . ~ ~ . ' ~  

The spike detection systems reviewed above have 
false detection rates that are, at best, 41 times higher than 
our system. This indicates that if they were tested on our 
data they would have a sensitivity at the global EEG level 
of 100% for definite epileptiform EEGs but, conversely, a 
very low selectivity as a result of most nonepileptiform 
EEGs being reported as containing EA. This highlights the 
effect that different data - particularly the ratio of normal 
to epileptiform EEGs - can have on the apparent perfor- 
mance of an automated spike detection system. 

It is notable that the two expert systems - the one 
used by Ramabhadran' and that used in this study - 
achieved the lowest false detection rates of any of the sys- 

tems reviewed here. Also, contrary to Webber et al's' con- 
clusion, this study has demonstrated that it is possible for 
a rules-based system to detect EA in real-time using soft- 
ware run on a PC. Furthermore, this can be done with rea- 
sonable accuracy, although not as yet at a level compara- 
ble with expert EEGers. 
111. Interpretation of computer-selected EEG segments 

In their review of EEGs reported as containing ques- 
tionable EA by the system, EEGers-ll interpreted the 6 sec 
segments of raw EEG with a good level of agreement. In 
most cases, the assessments of these EEGers matched 
that of combined EEGers-I, meaning that the review 
process was successful at eliminating false questionable 
detections by the system. 

Although EEGers-ll were successful in rejecting non- 
EA reported as questionable by the system, the review 
process made it more likely that questionable spikes 
(according to EEGers-I) would also be rejected. This hap- 
pened in a number of cases and probably reflects the lim- 
ited temporal information available to EEGers-ll during 
review of EEG segments. Other than questionable events, 
EEGers-ll had by definition to report on the presence of 
definite EA simply on the basis of the computer outputs. 
IV. Distribution of epileptiform activity 

EEGers-l agreed well on distribution of EA in the 29 
EEGs reported as containing definite EA by both groups of 
EEGers. EEGers-ll also agreed well with each other's clas- 
sification, indicating a high level of within-group uniformity 
in the two groups. These high levels of agreement partly 
reflect the decision to examine only those EEGs in which 
both combined groups detected definite EA. There was 
also a high level of inter-group agreement between 
EEGers-l and EEGers-11, indicating that the spike topo- 
graphical maps could be interpreted with good accuracy 
with respect to the distribution of EA. 
V. Clinical Utility 

Even though our spike detection system has a much 
lower false detection rate than that reported for other sys- 
tems, it is still too high to be considered for routine clinical 
use without review of reported events. Thus, its most 
appropriate application in its current state is to screen for 
the presence of EA. This would involve using it to detect 
possible EA in routine EEGs or in long-term EEG monitor- 
ing, and having these EEGs or segments reviewed by an 
EEGer. The low missed detection rate of the current sys- 
tem would mean that the workload of the EEGer could be 
reduced by 62% (325/521) without an unacceptably high 
number of EEGs containing definite EA (approximately 5%) 
being missed. 

There remains considerable scope in our detection 
system for further improvements in sensitivity and selectiv- 
ity. These will, in turn, enhance the value of our system as 
a diagnostic tool. Our system would also be improved by 
the addition of algorithms specifically tuned for detection of 
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electrographic seizures, although many are identified 
already by detection of spikes within bursts. 

In addition, we are investigating a number of alternative 
techniques to incorporate into the spike detection system. 
Particularly promising are (a) pre-detection spike enhance- 
ment by both neural-network-based multireference adap- 
tive noise cancellingz or 3-dimensional adaptive spatial fil- 
tering of deep EA,23 and (b) epileptiform waveform recog- 
nition using a hybrid approach comprising mimetic, self- 
organizing neural network, and rule-based fuzzy I ~ g i c , * ~ - ~  
and wavelet analysis.*’ 

This study has further strengthened our contention that 
multi-channel spatial context and wide-temporal context 
(particularly the presence of EA elsewhere in the EEG) 
must be utilized in a spike detection system for it to be able 
to match and, ultimately, better the expert EEGer. 
SUMMARY 

The aim of this study was to determine the perfor- 
mance of a PC-based system for real-time detection and 
topographical mapping of epileptiform activity (EA) in the 
EEG during routine clinical recordings. The system incor- 
porates a mimetic stage to locate candidate spikes (includ- 
ing sharp-waves) followed by two expert-system-based 
stages, which utilize spatial and wide-temporal contextual 
information in deciding whether candidate events are 
epileptiform or not. The data comprised 521 consecutive 
routine clinical EEG recordings (173 hours). Performance 

REFERENCES 
1. Webber WRS, Citt 6, Wilson K, Lesser RP. Practical detection 

of epileptifon discharges (EDs) in the EEG using artificial neur- 
al network: a comparison of raw and parameterued EEG data. 
Electrcencephabgr Clin Neurophysiol 1994; 91 : 194-204. 

2. Diimpelmann M, Elger CE. Visual and automatic investiga- 
tion of epileptiform spikes in intracranial EEG recordings. 
Epilepsia 1999; 40: 275-285. 

3. Davey ELK, Fright WR, Carroll GJ, Jones RD. Expert system 
approach to detection of epileptiform activity in the EEG. M e d  
Biol Eng Comput 1989; 27: 365-370. 

4. Glover JR, Raghavan N, Ktonas PY, Frost JD. Context-based 
automated detection of epileptogenic sharp transients in the 
EEG: elimination of false positives. IEEE Trans Biomed Eng 

5. Gotman J, Wang LY. State-dependent spike detection: con- 
cepts and preliminary results. Electroencephalogr Clin 
Neurophysiol 1991; 79: 11-19. 

6. Dingle AA, Jones RD, Carroll GJ, Fright WR. A multi-stage 
system to detect epileptiform activity in the EEG. IEEE Trans 
Biomed Eng 1993; 40: 1260-1268. 

1989; 36: 519-527. 

was evaluated by comparison with three independent elec- 
troencephalographers (EEGers-I). A second group of two 
EEGers (EEGers-ll) separately interpreted the spike topo- 
graphical maps and, for EEGs categorized as containing 
only questionable EA by the detection system, reviewed 6 
sec segments of raw EEG centered on each questionable 
event. Thirty-eight of the EEGs were considered to contain 
definite EA by at least two of EEGers-I. The false detection 
rate of the system was 0.41 per hour. The system was 
found to have a sensitivity of 76% and a selectivity of 41% 
for EEGs containing definite EA. However, it only missed 
detection of EA in 5Y0 of the recordings. EEGers-ll agreed 
with EEGers-l on the distribution (generalized, lateralized, 
focal, multifocal) of EA in 79% of cases. This is by far the 
largest clinical evaluation of computerized spike detection 
reported in the literature and the only one to apply this in 
routine clinical recordings. The false detection rate is the 
lowest ever reported, suggesting that this multi-stage rule- 
based system is a powerful and practical tool in clinical 
electroencephalography and long-term EEG monitoring. 
ACKNOWLEDGMENTS 

We wish to thank Dr. Elizabeth Walker and Dr. Suzanne 
Davis for their help in reading EEGs and Karen Burgess for 
her help in the organization of the raw data and data entry. 
We also wish to thank New Zealand Lotteries and the 
Canterbury Medical Research Foundation for their financial 
support of this project. 

7. Ramabhadran 6, Frost JD, Glover JR, Ktonas PY. An auto- 
mated system for epileptogenic focus localization in the elec- 
troencephalogram. J Clin Neurophysiol 1999; 16: 59-68. 

8. Hostetler WE, Doller JH, Homan RW. Assessment of a com- 
puter program to detect epileptiform spikes. Electroencepha- 
logr Clin Neurophysiol 1992; 83: 1-11. 

9. Jones RD, Dingle AA, Carroll GJ. et al. A system for detect- 
ing epileptiform activity in the EEG: real-time operation and 
clinical trial. Proc Ann Int Conf IEEE Eng Med Biol Soc, 
Amsterdam, The Netherlands 1996; 18: 948-949. 

10. Carroll GJ, Dingle AA, Jones RD, Donaldson IM, Parkin PJ, 
Burgess KL. Automated detection of epileptiform activity in the 
EEG. Electroencephalogr Clin Neurophysiol 1995; 97: S242. 

11. Jones RD, Dingle AA, Carroll GJ, et al. A PC-based system 
for automated analysis of the EEG. P rw  Med Eng Week 
World Conf, Taipei, Taiwan 1994; 1: 153-157. 

12. Webber WRS, Litt B, Lesser RP, Fisher RS, Bankman I. 
Automatic EEG spike detection: what should the computer 
imitate? Electroencephalogr Clin Neurophysiol 1993; 87: 
364-373. 

129 
 at University of Otago Library on January 31, 2013eeg.sagepub.comDownloaded from 

http://eeg.sagepub.com/


CLINICAL ELECTROENCEPHALOGRAPHY 02000 VOL. 31 NO. 3 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

Pietila T, Vapaakoski S, Nousiainen U, et al. Evaluation of a 
computerized system for recognition of epileptic activity dur- 
ing long-term EEG recording. Electroencephalogr Clin 
Neurophysiol 1994; 90: 438-443. 
Wilson SB, Harner RN, Duffy FH, Thap BR, Nuwer MR, 
Sperling MR. Spike detection. I. Correlation and reliabiltty of 
human experts. Electroencephalogr Clin Neurophysiol 1996; 

Black MA, Jones RD. Sensitivity and selectivity for continu- 
ous perception values: a comment. Electroencephalogr Clin 
Neurophysiol 1998; 106: 457-459. 
Black MA, Jones RD, Carroll GJ, Smith MH. Bayesian evalu- 
ation of automated EEG analysis system in the absence of a 
gold standard. NZ Med J 1997; 110: 444. 
Glover JR, Varmazis DN, Ktonas PY. Continued development 
of a knowledge-based system to detect epileptogenic sharp 
transients in the EEG. Proc Ann Int Conf IEEE Eng Med Biol 
Soc, Philadelphia, USA 1990; 12: 1374-1375. 
Gotman J. Gloor P. Automatic recognition and quantification 
of interictal epileptic activity in the human scalp EEG. Electro- 
encephalogr Clin Neurophysiol 1976; 41 : 513-529. 
Gotman J, lves JR, Glwr  P. Automatic recognition of inter- 
ictal epileptic activity in prolonged EEG recordings. Electro- 
encephalogr Clin Neurophysiol 1979; 46: 510-520. 
Gotman J, Wang LY. State-dependent spike detection: valida- 
tion. Electroencephalogr Clin Neurophysiol 1992; 83: 12-18. 

98: 186-198. 

21. Gabor AJ, Seyal M. Automated interictal EEG spike detection 
using artificial neural networks. Electroencephalogr Clin 
Neurophysiol 1992; 83: 271-280. 

22. James CJ, Hagan MT, Jones RD, Bones PJ, Carroll GJ. 
Multireference adaptive noise cancelling applied to the EEG. 
IEEE Trans Biomed Eng 1997; 44: 775-779. 

23. Ward D, Jones R, Bones P, Carroll G. Enhancement of deep 
epileptiform activity in the EEG via 3-D adaptive spatial filter- 
ing. IEEE Trans Biomed Eng 1999; 46: 707-716. 

24. James CJ, Jones RD, Bones PJ, Carroll GJ. The self-orga- 
nizing feature map in the detection of epileptiform transients 
in the EEG. Proc Ann Int Conf IEEE Eng Med Biol Soc, 
Amsterdam, The Netherlands 1996; 18: 913-914. 

25. James CJ. Jones RD, Bones PJ, Carroll GJ. Spatial analy- 
sis of multi-channel EEG recordings through a fuzzy-rule 
based system in the detection of epileptiform events. Proc 
Ann Int Conf IEEE Eng Med Biol SOC. Hong Kong 1998; 

26. James CJ, Jones RD, Bones PJ. Carroll GJ. Detection of 
epileptiform discharges in the EEG by a hybrid system 
comprising mimetic, self-organized artificial neural net- 
work, and fuzzy logic stages. Clin Neurophysiol 1999; 110: 

27. Goelz H, Jones RD. Bones PJ. Wavelets and their applica- 
tion to biomedical signal analysis. Proc Ann In1 Conf IEEE 
Eng Med Biol Soc, Atlanta, USA 1999; 21: (CD-ROM). 

20: 2175-2178. 

2049-2063. 

130 
 at University of Otago Library on January 31, 2013eeg.sagepub.comDownloaded from 

http://eeg.sagepub.com/

